账号:
密码:
智动化 / 文章 /

BMW利用机器学习检测汽车的过度转向
[作者 Tobias Freudling]   2019年05月20日 星期一 浏览人次: [1419]


过度转向是一种不安全的状况,在这种状况下,车辆的後轮胎会在转弯时失去抓地力(图 1),引起这种状况的原因可能是轮胎磨损、路面湿滑、转弯速度过快、转弯时突然制动,或是这些因素加总起来所致。



图1 : 在测试赛道上检测BMW M4 的过度转向问题。
图1 : 在测试赛道上检测BMW M4 的过度转向问题。

现代的稳定控制系统,可以在侦测到车辆过度转向时自动采取矫正的措施。理论上,藉由以第一原理(First principle)为基础的数学模型,这类系统能够辨识过度转向的情况。例如,当车载感测器的测量值超过模型中既定的叁数??值时,系统即可确定车辆发生过度转向。


然而,在现实上,由於牵涉到众多因素的相互作用,这种方法已被证实难以在实际情况中实现;同一辆汽车在轮胎充气不足的情况下行驶於结冰路面,与在轮胎充气适当的情况下於乾燥路面上行驶,需要的??值可能大不相同。


在BMW,我们正在探索利用各种机器学习方法来侦测过度转向的状况。利用MATLAB,我们开发了一种监督式机器学习模型作为概念验证,尽管之前几??没有任何机器学习方面的经验,但在短短三周内,就完成了一个可以正常运作的ECU原型,侦测过度转向的准确率可达到超过98%。


收集资料和撷取特徵

我们首先收集了汽车上过度转向发生前、发生时、发生後的真实资料。在专业驾驶人员的帮助下,我们在法国米拉马斯的BMW试验场,对BMW M4 进行了即时道路驾驶测试(图2)。



图2 : 位於法国米拉马斯的BMW试验场。
图2 : 位於法国米拉马斯的BMW试验场。

在测试期间,我们撷取了侦测过度转向演算法中的一些常用讯号:车辆的纵向加速度、横向加速度、转向角度和偏航率。此外,还记录了驾驶人员对於过度转向的认知:当驾驶人员认定汽车发生过度转向时,坐在乘客位置的同事会按下笔记型电脑上的一个按钮。当驾驶人员认为汽车恢复正常驾驶状态时,该同事会松开按钮。这些按钮的点击建立了提供训练监督式学习模型所需的地面真实标记(ground truth labeling),在43分钟的记录资料中总共撷取到大约259,000个资料点。


回到在慕尼黑的办公室,我们将收集到的资料载入至MATLAB中,并使用统计与机器学习工具箱(Statistics and Machine Learning Toolbox)中的Classification Learner app,利用各种分类器对机器学习模型进行训练。刚开始使用这些原始资料训练的模型,并不会产生很出色的结果,准确率大概落在75%到80%之间。为了达到更准确的结果,清理并减少原始资料。首先,使用滤波器来降低讯号资料中的杂讯(图3)。



图3 : 原始转向角度讯号(蓝色)和经过滤波处理後的相同讯号(橙色)。
图3 : 原始转向角度讯号(蓝色)和经过滤波处理後的相同讯号(橙色)。

接下来,使用峰值分析来辨识经过滤波处理的输入讯号的峰值(局部极值)(图 4)。



图4 : 辨识出峰值的转向角度讯号。
图4 : 辨识出峰值的转向角度讯号。

评估机器学习方法

在过滤和减少收集的资料後,我们能够更有效地评估监督式机器学习方法。藉由 Classification Learner app,我们尝试了k-最近邻(KNN)分类器,支持向量机 (SVM)、二次判别分析和决策树。我们还使用该app来查看经由主成分分析(principal component analysis,PCA)转换的特徵所带来的影响,这有助於防止过度拟合。


从我们评估的分类器所得到的结果整理於表1。所有分类器在辨识过度转向方面均表现良好,其中有三个分类器取得了高於98%的真阳性率(true positive rates)。具有决定性是真阴性率(true negative rates):分类器能够确定车辆未发生过度转向的准确度。在这里,决策树的表现优於其他分类器,其真阴性率几??达到 96%。


表1 使用四种不同的监督式机器学习分类器的结果。

 

真阳性率 %

真阴性率 %

假阳性率 %

假阴性率 %

使用PCA K-最近邻

94.74

90.35

5.26

9.65

支持向量机

98.92

73.07

1.08

26.93

二次判别分析

98.83

82.73

1.17

17.27

决策树

98.16

95.86

1.84

4.14


产生实车测试所需的程式码

虽然从决策树得到的结果十分令人振奋,但是分类器模型落实在真实汽车中的 ECU上的表现才是真正的关键。我们使用MATLAB -C转码器从模型生成程式码,并为安装在BMW Series 5轿车中的目标ECU编译程式码。这一次,我们自己在靠近慕尼黑办公室的阿施海姆附近的BMW工厂执行了测试。由我来驾驶,我的同事负责收集资料,准确地记录下我指出车辆发生过度转向的时间。


在ECU上即时运作的分类器表现非常惊人,准确率约为95%。但在进入测试阶段後,由於使用了不同的车辆(BMW Series 5而不是M4)、不同的驾驶人员和不同的赛道,因此无法预期会发生什麽样的情况。仔细观察资料後发现,模型与驾驶人员所认定的过度转向不相符的情况,大多发生在过度转向开始和结束时。这样的差异可以理解;因为即使是驾驶人员,也很难准确地判断过度转向是在何时开始和停止。


成功开发出用於过度转向侦测的机器学习模型,并将其布署在原型ECU上之後,我们现在正在构想机器学习的许多其他潜在应用。我们几十年来收集了大量可供使用的资料,而现在一辆汽车在一天内就可以产生数TB的测量资料。透过MATLAB,让我们有机会开发机器学习相关的软体,从而可以利用这些可用资料来了解驾驶人员的行为并改善驾驶体验。


(本文由??思科技提供;作者Tobias Freudling任职於BMW集团)


相关文章
仓储物流新平台 效率再升级
网通架构完善与否 决定物联网系统效能
感测器新功能加速物联网技术应用於智慧场域
智慧机械非一蹴可及 感测器化身智慧机械预诊断功臣
以单一电池为NB-IoT连网提供十年电源支持
comments powered by Disqus
  相关新闻
» 上海宾通智慧科技汇集海内外专家 智慧制造与人工智慧应用论坛落幕
» 宾通与??华签订战略合作协议 共享工业机器人及通讯技术资源
» 宾通与均豪签订战略合作协议 正式开启高科技业合作新章
» 台北国际安全科技应用博览会5/8~10开展 亚洲地区产官方代表齐聚一堂
» 夏弗纳推出最小电源滤波器 适用於逆变器和动力驱动系统
  相关产品
» 明纬扩充EPP-500系列
» KNX用於现代建筑 可降低事後维护与火灾风险
» 瑞萨电子推出故障检测e-AI解决方案 简化马达型家电的维护
» 工控平台强势升级 敏博全新NVMe PCIe固态硬碟PT33系列进化登场
» 浩亭Han-Modular Flexbox 适合能源链条的模组化连接器


刊登廣告 新聞信箱 读者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2019 远播信息股份有限公司版权所有 Powered by O3
地址:台北市中山北路三段29号11楼 / 电话 (02)2585-5526 / E-Mail: webmaster@hope.com.tw